PI meeting for the National Robotics Initiative

September 15, 2013 Leave a comment

The National Robotics Initiative will have its first PI meeting on October 1-2, 2013. The meeting will be organized by the Robotics Virtual Organization (Robotics-VO) and take place at Hyatt Crystal City, Crystal City, VA.

It is anticipated that more than 200 people will attend the meeting. The program includes presentations by the NRI program managers / agencies, highlighted PI presentations, industry panels and presentations by program managers from other agencies such as ONR, DARPA and NIST. Finally all funded NRI projects will feature 1 or more posters. The event is an excellent opportunity to see the diverse of projects that are carried out within the NRI and also to get a sense of other opportunities that are emerging related to robotics.

Two tutorials are also organized as part of the program. One related to rapid prototyping of hardware using 3D printing, folding, … and another related to ROS/Gazebo.

Georgia Tech Robotics secures $2.3M in funding from NSF

September 15, 2013 Leave a comment

The National Science Foundation (NSF) awarded more than $2 million to fund projects led by Georgia Tech robotics researchers. The principal investigators (PIs) and co-PIs for these projects represent three of the Institute’s six colleges, illustrating the interdisciplinary collaboration that distinguishes Tech as a leader in the national initiative to accelerate the development and use of robots in the United States.

Georgia Tech faculty have a strong tradition of exceptional research and a robust interdisciplinary focus . Extremely proud of and continually impressed with the contributions our researchers make to advancing robotics

Three projects received NSF funding through the National Robotics Initiative program, which was unveiled by President Obama in June 2011, and is led by NSF with support from NASA, the National Institutes of Health, and the United States Department of Agriculture. Tech’s new projects focus on the development of the next generation of robotics and the advancement of the capability and usability of such systems in innovative application areas:

  • “Learning from Demonstration for Cloud Robotics”—Led by School of Interactive Computing Associate Professor Andrea Thomaz, this project received $426K and aims to leverage cloud computing to enable robots to efficiently learn from remote human domain experts.
  • “Understanding Neuromuscular Adaptations in Human-Robot Physical Interaction for Adaptive Robot Coworkers”—Led by School of Mechanical Engineering Assistant Professor Jun Ueda, this research focuses on developing theories, methods, and tools to understand the mechanisms of neuromotor adaptation in human-robot physical interaction. Associate Professor Minoru Shinohara (School of Applied Physiology) and Assistant Professor Karen Feigh (School of Aerospace Engineering) serve as co-PIs on the project, which received almost $1.2M.
  • “Don’t Read My Face: Tackling the Challenges of Facial Masking in Parkinson’s Disease Rehabilitation through Co-Robot Mediators”—Led by College of Computing Associate Dean & Regents’ Professor, Ronald Arkin, this project received almost $580K and has two primary goals: 1) developing a robotic architecture endowed with moral emotional control mechanisms, abstract moral reasoning, and theory of mind sensitive to human affect and ethics; and 2) creating a specific architecture for a robot to mediate communication barriers between caregivers and patients with Parkinson’s disease who experience “facial masking,” or lack of recognizable emotion.

The fourth project, “Bioinspired Collaborative Sensing with Novel Gliding Robotic Fish,” received more than $83K from the NSF’s Robust Intelligence (RI) program, which encompasses all aspects of the computational understanding and modeling of intelligence in complex, realistic contexts. Led by School of Electrical & Computer Engineering Associate Professor Fumin Zhang, the research aims to establish a theoretical framework and provide an enabling technology for robust underwater collaborative sensing with small, inexpensive robots.

Robotics research at Tech attracts more than $35 million in sponsored research each year. Core research areas include mechanisms, control, perception, artificial intelligence, human interaction, and application technologies. The Institute continues to advance personal and everyday robotics through its research into the ways robots can learn from and interact with humans, and by exploring issues surrounding their governance and ethical use.

Categories: AMRON, robotics Tags: ,

Robots and Humans

Great story in NY Times today about the cooperation between humans and robots. The next generation of robot system systems will be Co-robots where they cooperate with humans to perform tasks that may be difficult to perform by humans alone as they require heavy lifting, high precision or the tasks are highly repetitive. Humans are still incredible in terms of perception, dexterity, cognition and reasoning, so the combined human-robot system offers a number of added advantages.

One of the challenges is also is also to provide easy programming. A traditional industrial system will have a cost break down of ~25% for the robot, ~25% for auxiliary hardware and 50% for software. Through new programming paradigms it is possible to design systems that are much faster to program – the Baxter robot is an example of a new generation of such systems.

Categories: AMRON, robotics Tags: , ,

Updated National Robotics Roadmap

As mentioned in an earlier posting the US National Robotics Roadmap was published the past week. The roadmap is a revision of the First US Robotics Roadmap that was released May 2009 based on a CCC sponsored study. The second version of the roadmap contained an update to three sections i) manufacturing, ii) healthcare/medical robotics, and iii) service applications (domestic and professional). In addition, new sections covering defense and space were added to the roadmap.

During 2011 we saw a 40+% increased in robot sales in the US for manufacturing. We also saw significant growth to service and healthcare applications. Overall the sector experienced fantastic growth. We have also seen how utilization of robotics and automation has enabled companies such as Apple, Lenovo, GE, Foxconn, … to setup new manufacturing facilities on US soil. Robotics has become an important catalyst to drive forward jobs, the economy and building stronger communities. An important challenge is to ensure education of our workforce. This includes all levels of the enterprise from design to manufacturing and from factory floor to board room. We have a significantly shortage of people to staff the manufacturing enterprise.

Categories: AMRON, robotics Tags: ,

Robots to Spur Economy, Improve Quality of Life, Keep Responders Safe

March 20, 2013 2 comments

Press release from Georgia Tech – March 20:

Robots are being used more widely than expected in a variety of sectors, and the trend is likely to continue with robotics becoming as ubiquitous as computer technology over the next 15 years.

That is the message Henrik Christensen, Georgia Tech’s KUKA Chair of Robotics in the College of Computing, will bring to the Congressional Robotics Caucus on March 20 as he presents, “A Roadmap for U.S. Robotics: From Internet to Robotics – 2013 Edition.”

The report, which outlines the progress of robots in multiple industries over the last five years and identifies goals for the coming decade, highlights robotics as a key economic enabler with the potential to transform U.S. society.

“Robots have the potential to bring manufacturing jobs back to the U.S., to improve our quality of life and to make sure our first responders and warfighters stay safe,” said Christensen, who is also the coordinator of Robotics VO, sponsor of the report. “We need to address the technical and educational needs so we can continue to be leaders in developing and using robotic technology.”

A group of more than 160 experts from universities, industry and government came together for five workshops over the last year to fully evaluate the use of robotics across various applications and create a roadmap to the future. Christensen is presenting that report to lawmakers as a guide on how to allocate resources to maximize progress.

Most notably, the group found using robots in manufacturing could help generate production systems that are economically competitive to outsourcing to countries with lower wages.

Already companies like Apple, Lenovo, Samsung and Foxconn have begun to “reshore” manufacturing by using robotics in production systems. The sale of robotics in manufacturing grew by 44 percent in 2011 as robots have become cheaper and safer. The use of robots is shifting from big companies like GM, Ford, Boeing and Lockheed Martin to small and medium-sized enterprises to enable burst manufacturing for one-off products, the report found.

But Christensen notes that automation in manufacturing will not lead to job losses for U.S. workers, but will create new high-value jobs.

“Some jobs will be eliminated but they are the ‘dirty, dull and dangerous’ jobs,” Christensen said. “Those jobs will be replaced with skilled labor positions. That’s why one of the goals in the roadmap is to educate the workforce.”

In addition to manufacturing, robots are helping businesses, such as Amazon, improve logistics and reduce delivery costs, a savings that could be passed onto the consumer. In agriculture, robots are being used to precisely deliver pesticide onto crops, reducing unnecessary exposure of chemicals on produce. The report recommends that progress in both areas be expanded.

With advances in human-like manipulation, robots are increasingly assisting individuals with disabilities with tasks like getting out and preparing meals. They are also being used in 40 percent more medical procedures than a few years ago in a greater number of surgical areas such as cardiothoracic, gynecology, urology, orthopedics, and neurology. The use of robots for surgery can reduce the complications by 80 percent, the report found.

Robots have proven their value in removing first-responders and soldiers from immediate danger. More than 25,000 robotic systems were deployed in Iraq and Afghanistan for ground and aerial missions. More than 50 percent of pilots in the U.S. Air Force operate remotely piloted systems and never leave the ground.

Robots are also becoming integral part of space exploration, such as Opportunity and Curiosity on Mars. A “robonaut” is on the International Space Station helping with menial but important research tasks.

As impressive as the progress in robotics has been, the report outlines 5-, 10- and 15-year goals to take robotics to the next level. Critical capabilities that should be developed for robotics include 3-D perception, intuitive human-robot interaction and safe robot behavior.

The report is an update to the initial robotics roadmap, which was published and presented to Congress in May 2009. That roadmap led to the creation of the National Robotics Initiative, an effort jointly sponsored by the National Science Foundation, the U.S. Department of Agriculture, the National Aeronautics and Space Administration and the National Institutes of Health. It also established Robotics VO, an umbrella organization that brings all robotics players together to focus on joint initiatives.

“Robotics is one of a few technologies capable of building new companies, creating new jobs and addressing a number of issues of national importance,” said Christensen. “We hope this report will help foster the discussion on how we can build partnerships and allocate resources to move the robotics industry forward.”

Categories: AMRON, robotics Tags: , ,

Robots, Jobs and Economic Development

January 15, 2013 Leave a comment

Recently there has been a lot of press stories about robots, the economy
and its relation to employment. The stories are mixed. Some claim that
we will loose jobs to robots others are saying that through use of
robots manufacturing in the US will grow. In reality both of those
viewpoints are valid and understandable. Unfortunately most of the
stories are presented as one or the other. A more two-sides presentation
is beneficial.

Over the last few years we have seen an increase in use of robot
systems. Robots have been used for dull, dirty and dangerous jobs. This
includes welding, sorting in warehouses, electronics assembly. It is
clear that introduction of robots to perform a job that a human was
doing before might displace a person. There are three kinds of uses: 1.
introduction of robots to perform tasks that cannot be performed by
humans, 2. introduction of systems to assist people, and 3. introduction
of systems to do work formerly performed by humans. The motivation for
displacement of labor is typically higher performance, which can be
lower price, higher quality or improved performance.

Throughout history there has been a worry about new technology. About
130 years ago people were worried with the introduction of steam engines
and assembly lines. What would happen to the labor force? Eventually we
had the automotive industry that could generate affordable cars for
everyone and a significant number of new jobs. Around 1980 secretaries
were worried about their jobs as typing pools disappeared due to the
introduction of personal computers. Today most people handle their own
email, … but there are nonetheless more administrative assistants
doing travel, scheduling, meeting minutes. The jobs have become
increasing skilled. So one of the challenges we are experiencing is that
some unskilled jobs gradually are getting automated and the displacement
in jobs is from unskilled to skilled labor. It will be important for the
work force to continue to receive training.

As an example through use of robots it is possible to reduce the price
of manufacturing, which in turn enables in-sourcing. Apple has
announced a new plant in the US and so has Lenovo. Tesla manufactures
green cars in California. Welding is performed by robots just as it has
been done for 30 years in Detroit. Some of the jobs carried out in
foreign countries can only be insourced through use of automation.
However, every job in manufacturing creates another 1.3 associated jobs
in services, supply chain, etc. The economy is growing and slowly we are
recovering jobs. The current trend is that jobs that were outsourced
earlier are returning to America, some of them through use of automation
and some new ones for manufacturing and some in associated industries.

Categories: robotics

US FIRST FRC competition for 2013 season announced

January 5, 2013 2 comments

Today at 11AM EST the US FIRST announced the game and rules for this seasons game. The accouncement can be seen on the US FIRST web-site

The annoucement was broadcast on the NASA public feed. The game is termed ultimate ascent. The field will have two pyramids and the robots will be required to use friesbees to score on the buckets at the end of the fields. Double points for scoring during the autonomous period. At the end the robots can climb the pyramids to score more points. The code is sAucersFlyRobotsClimb!

We had 53 teams at the launch event at Georgia Tech. The event was organized by the RoboJackets and sponsored by the Woodroof School of Mechanical Engineering, RIM@GT, GM, National Instruments, United Technologies, College of Computign, Kimberly Clark, Automation Direct, MSC Industrial Supply. More than 800 high school students showed up for the event.

Good luck to everyone for the 2013 season and remember to have fun.

 

Categories: robotics
Follow

Get every new post delivered to your Inbox.